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Outline

• The axisymmetric Vlasov equation.

• Semi-Lagrangian methods on unstructured meshes.

• An adaptive method based on a wavelet decomposition.
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Last week

• Overview of Vlasov method.

• In particular: The semi-Lagrangian method (forward

and backward).

• Applications for beam propagation in uniform and

periodic focusing channels.
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The backward semi-Lagrangian Method

• f conserved along

characteristics

• Find the origin of the

characteristics ending

at the grid points

• Interpolate old value at

origin of characteristics

from known grid

values → High order

interpolation needed
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The axisymmetric Vlasov equation

The distribution function f(r, vr, vθ, t) is given by
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where Bz is external and Es given by Poisson’s equation

∇ · E = ρ(t, r)/ε0, ρ(t, r) = q
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Invariants of the Vlasov equation

In order to reduce the dimension of the problem we use

the invariance of the canonical angular momentum

P (r, vθ) = mrvθ +
r2

2
qBz.

Denoting by I = P
m and making the change of variable
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Discretization of the axisymmetric Vlasov
equation

• Invariant I is a parameter but needs careful

discretization. Characteric curves of the form

ω2

2
r2 + v2

r +
I2

r2 = const.

→ necessary to control I/r hence I is discretized

according to I = ω r2, in vicinity of axis.

• Difficulty near r = 0 because of I2/R3 term.



7

• Time-Splitting scheme:

? Advection in r : ∂f∗

∂t + vr
∂f∗
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• Cubic Hermite interpolation with numerical computation

of derivatives by a fourth order finite difference scheme
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Parallelization

• Straightforward using the Invariant.

• Only communications are for gathering of ρ.

# CPU 2D Cartesian PFC Axisymmetric

4 178 min 59 min

8 89 min 27 min

Table 1: Computational time for a 2D× 2D cartesian
and axisymmetric solvers.
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The semi-Lagrangian method on
unstructured grids

• Give more flexibility to mesh.

• Operator splitting used between x and v advections so

that advection is explicit.

• Interpolation in full phase space necessary at each step.

• Interpolation done using Finite Element basis functions

→ many possibilities.

• Computation of ρ(x) needs interpolations.
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Properties of scheme

• High order Lagrange seems unstable due to oscillations

on edge of elements.

• Hermite type elements with CIP type method seems the

best choice in this case.

• Positiveness and conservativeness can be ensured

by switching between high order and first order

interpolation.
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Adaptive semi-Lagrangian method

• We want to optimize the number of grid points for a

given numerical error.

• Multi-resolution techniques using interpolating wavelets

are well suited to determine where refinement is needed.

• Principle of the method

? Use different levels of meshes

? At one given level, decompose gridfunction into

gridfunction at coarser level + details.
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V
j

Grid Gj, grid points xjk = k 2j, level j



13

Vj+1V
j

Grid Gj+1, grid points xj+1
k = k 2j+1, level j + 1
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Vj+1 Vj+2V
j

Grid Gj+2, grid points xj+2
k = k 2j+2, level j + 2
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The wavelet decomposition

• Idea: Decompose more precise sample, i.e. values of

f at grid points of Gj+1 (denoted by ci+1) into smaller

sample i.e. values of f at grid points of Gj (denoted by

ci) + details (denoted by di).

• Details contain difference between exact value and value

predicted using interpolation operator.

cj+1
2k = cjk same value at coarse mesh points

djk = cj+1
2k+1 − P2N+1(x

j+1
2k+1).
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Prediction operator

Predict values at unknown positions of finer level using

lagrange interpolating polynomial on coarser level.
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Prediction operator

Predict values at unknown positions of finer level using

lagrange interpolating polynomial on coarser level.

cubic
polynomial
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Prediction operator

Predict values at unknown positions of finer level using

lagrange interpolating polynomial on coarser level.

cubic
polynomial

value
predicted

djk = cj+1
2k+1 − P2N+1(x

j+1
2k+1) and cj+1

2k = cjk
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Adaptivity and semi-Lagrangian method

• Semi-Lagrangian method based on polynomial

interpolation.

• Main idea for adaptivity: details are small where

interpolation does a good job.

• In adaptive method, use wavelet decomposition to

eliminate grid points corresponding to small details.

• No loss of information due to wavelet decomposition.
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Scaling function
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Wavelet interpolation

Interpolation formula
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The Algorithm for the Vlasov Problem...

• Initialisation: decomposition and compression of f0.

• Prediction in x of the grid G̃ (for important details)

at the next split time step following the characteristics

forward. Retain points at level just finer.

• Construction of Ĝ: grid where we have to compute

values of f ∗ in order to compute its wavelet transform.
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...The Algorithm for the Vlasov Problem...

• Advection-interpolation in x: follow the

characteristics backwards in x and interpolate using

wavelet decomposition (1): f ∗(x, v) = fn(x− v∆t, v)

• Wavelet transform of f ∗: compute the ck and dk
coefficients at the points of G̃.

• Computation of electric field from Poisson.

• Prediction in v : as for x.
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...The Algorithm for the Vlasov Problem

• Construction of Ĝ: grid where we have to compute

values of fn+1 in order to compute its wavelet transform.

• Advection-interpolation in v: as for x fn+1(x, v) =
f ∗(x, v − E(x) ∆t) using wavelet decomposition.

• Wavelet transform of fn+1: compute the ck and dk
coefficients at the points of G̃.

• Compression of fn+1.
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Numerical results
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A few papers and web pages

• Nicolas Besse : Semi-Lagrangian schemes for the Vlasov

equation on an unstructured mesh of phase space

http://www-irma.u-strasbg.fr/irma/publications/2002/02028.shtml

• Francis Filbet, Jean-Louis Lemaire, Eric Sonnendrucker :

Direct axisymmetric Vlasov simulations of space charge

dominated beams

http://www-irma.u-strasbg.fr/irma/publications/2002/02009.shtml

• Francis Filbet, Eric Sonnendrucker : Comparison of

Eulerian Vlasov Solvers
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http://www-irma.u-strasbg.fr/irma/publications/2001/01035.shtml

• Francis Filbet, Eric Sonnendrucker, Pierre Bertrand:

Conservative numerical schemes for the Vlasov equation.

J. Comp. Phys. Volume 172, Number 1 pp. 166-188

(2001).

• The VADOR code:

http://www-irma.u-strasbg.fr/~filbet
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Conclusions

• Axisymmetric problems can be brought back to 4D

phase space or 2D slice which makes them tractable

thanks to use of invariance of angular momentum.

• Unstructured meshes feasible but more complicated and

fairly slower.

• Adaptive method looks promising in 2D phase space.

Implementation more complex due to adaptive mesh

structure. Needs to be extended to higher dimensions.


